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A general non-empirical system of increments for the calculation of molecular 
properties of polycyclic, conjugated hydrocarbons is proposed. It is based on 
identifying the conjugation circuits in all Kekul6 structures and assuming an 
increment from each circuit comparable to the magnitude of the property in 
the associated annulene. These increments are calculated by a simple free- 
electron theory with a Kuhn-type harmonic potential. No adjustable para- 
meters are used to fit the property being calculated. 

The relation between this method and a very simplistic VB formalism is 
considered. The reason why the non-empirical parametrization of such 
crudely approximated formalism may lead to rather improved results is 
discussed in some detail. 

This novel system of increments is tested for two properties, resonance energy 
and magnetic ring-currents. The results obtained by this method correlate well 
with those of standard techniques. This system of increments for estimating 
local properties of molecules gave particularly gratifying results when used to 
predict ring-current intensities. It is hoped that this method, being equally 
applicable to other properties, will prove to be a valuable instrument for the 
rapid estimation of a wide range of properties of polycyclic, conjugated 
hydrocarbons. 

Key words: System of increments - Magnetic ring currents - Resonance ener- 
g ies -  Conjugated hydrocarbons-  Graph t h e o r y -  Local properties. 

1. Introduction 

One of the long term goals of theoretical chemists has been the understanding of 
the properties of molecules in terms of the nature of the atoms which integrate 
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them and of the way they are bonded in a chemical sense. It is widely recognized 
that chemical properties of most molecules are primarily local properties of 
chemical bonds and/or functional groups. Nevertheless conventional methods in 
quantum chemistry are designed to produce state-functions extending over an 
entire molecule. Molecular properties are therefore made to depend on the 
electron distribution over the whole molecule in an indiscriminate manner. In 
recent years, however, there has been some progress towards solving this prob- 
lem. Mazziotti, Parr and Simons [2] and Bader and coworkers [3-6] have shown 
how a molecule may be partitioned into regions which are quantum mechanically 
separated from their environment. Payne [7] has recently proposed a Hartree- 
Fock Theory for local regions in molecules where local orbitals are variationally 
determined within a subset of basis functions. 

Polycyclic, conjugated hydrocarbons present special difficulties as it has been 
known for a long time that any approach to molecular properties that involves 
atomic and bond increments gives unacceptable results when applied to this class 
of molecules. In the case of magnetic susceptibilities, for example, Pascal's [8-10] 
system of atomic and bond contributions needs certain extra terms relating to the 
different types of rings before it may be usefully applied to polycyclic, conjugated 
hydrocarbons. 

In this paper we shall discuss several ways of analyzing the contributions from 
the different rings in a polycyclic, conjugated hydrocarbon and shall consider two 
properties, delocalization energy and magnetic susceptibility. The questions to 
be answered are what rings should be considered and what contribution to the 
molecular property should be associated with those rings. 

Any analysis of the cycles or circuits in a polycyclic molecule is manifestly 
topological and as such may be tackled by the techniques of graph theory. 
However very useful in providing a reduction of the description of a large 
polycyclic molecule to some simple features, graph theory does not give an 
immediate physical understanding. The calculation of molecular properties within 
a graph-theoretical formalism does normally ask for some sort of fitting to a given 
set of data. A considerable amount of work has been dedicated to pursuing this 
line of thought. The adjacency matrix A(G) associated with the molecular graph 
G is defined in the usual way [11], and its characteristic polynomial, P(G; x) is 

N 

P(G; x) = det ( x I - A )  = ~ ai(G)x u-i 
i=0  

where ! is the unit matrix and ai(G) the coefficients of the polynomial P(G; x). 
The coefficients ai(G) may be computed by Sachs' theorem [12, 13]. For this, it 
is convenient to define subgraphs of G which have no components other than 
cycles and complete graphs of degree one (o---o), the so called mutation graphs 
of G [14, 15]. The coefficients ai(G ) are then given by the following expression 

ao = 1 

a,, = Y'. ( -  1)~(')2 r(~), n ~ [1, N] 
s E S  n 
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where the summation extends over all mutation graphs of G with n vertices, 
c(s) is the number of components of s and r(s) is the number of rings of s. 

If odd-membered cycles do not exist or are not considered, the set of mutation 
graphs SN corresponds to the Kekul6 graphs with conjugation circuits drawn in 
them [16-18] in all possible ways. 

Gutman et al. [19] define a "topological resonance energy" (TRE) as the 
difference between the HMO (Hfickel Molecular-Orbital) ~--electron energy of 
the molecule and that of the acyclic analogue, this being defined as having a 
characteristic polynomial pat(G; x) constructed from that associated with the 
molecule by exclusion of all cyclic terms. The TRE is given by the expression 

N 
T R E =  • g;(xi-x~ c) (1) 

j= l  

where &- is the occupation number of orbital j and xj and x~ c are the zeros of 
polynomials P(G; x) and Pat(G; x). This TRE may also be given [19] by 

f +oo P(G; ix) 
TRE=(1 / z r )  -~ in P ~ - ~ i ~ x )  dx. (2) 

The ratio p/pac depends fundamentally on the rings (conjugation circuits) which 
appear in P but are excluded in pac. In fact 

P(G; ix) P(G; ix)-PaC(G; ix) PC(G; ix) 
pac(G;ix ) 1"+ pac(G;ix ) -l"+p,c(G;ix ) (3) 

where pc (G; ix) is constructed by Sachs' theorem but considering only terms with 
rings (r(s)# 0). This suggests that conjugation circuits have an effect on the 
molecular property and that all of them should be considered. 

Randi6 [18, 20] proposed a system of increments for the resonance energies of 
polycyclic, conjugated hydrocarbons with empirical increments associated with 
the conjugation circuits considered to be independent in each Kekul6 structure. 
The increments are considered for circuits with an even number of edges, up to 
18 edges, by fitting to SCF-calculated resonance energies. This empirical system 
produces rather good results for the resonance energies, the only molecular 
property for which it was tested. Earlier, Herndon [21, 22] had proposed a 
method of estimation of resonance energies which, although introduced in a 
context related to valence bond (VB) theory, is analogous to that of Randi6 if 
one considers contributions from [6]- and [10]-membered rings alone. The role 
of the VB theory in this problem will be discussed below in detail. It should be 
noted at this point that, if the counting of conjugation circuits introduced by 
Randi6 [18, 20] is understood to be related to a graph-theoretical application in 
the sense discussed earlier, then it is more closely related to a molecular-orbital 
theory, the HMO. One should, however, remember the relations between the 
two formalisms as shown by Dewar and Longuet-Higgins [23] and, more recently, 
by van der Hart et al. [24] and Haigh and Mallion [25, 26]. 
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Magnetic resonance and NMR chemical-shifts are, unlike resonance energy, 
properties which depend on the excited states intervening in the magnetically 
perturbed state-function. In McWeeny's [27] method of calculation of the mag- 
netic ring-currents which proceeds at the HMO-level, a transformation is made 
in the hamiltonian matrix which makes it clear that the magnetic effect depends 
on the existence of closed rings in the molecule. The contribution from a ring, 
however, depends not only on its topology and size but also on the environment 
in which it is placed, i.e. ring contributions are not transferable from molecule ta 
molecule [28]. The present author [16, 17] has proposed a recipe to estimate 
ring-currents with a system of increments from all conjugation circuits in all 
Kekul6 structures. The fact that these magnetic properties correlate so well with 
the conjugation circuits found for these molecules gives a strong indication that 
such correlations may be quite general, applicable not only to ground-state 
properties, but also to properties which depend on molecular excited-states. 

In a recent article, Gayoso [29] correlated magnetic susceptibility exaltations 
in polycyclic, conjugated hydrocarbons to the conjugation circuits found for the 
molecule by the methods of Randi6 [18, 20]. Increments were chosen so as to 
reproduce the known exaltations, A, in benzene, naphthalene, anthracene, 
tetracene and pentacene; for the 19 molecules tested, the mean of the ratio 
I(Acalc-Aexp)/Aexp.I is 0.12. This confirms that magnetic properties may be 
correlated with the conjugation circuits associated with the molecule. Aihara 
applied graph-theoretical methods to relate the magnetic susceptibility to the 
conjugative stabilization [30, 31]. 

This paper addresses the problem of designing a non-empirical system of incre- 
ments for the properties of polycyclic, conjugated hydrocarbons, of general 
applicability and with a reasonable quantum mechanical backing. It is found that 
the conjugation circuits provide the basic units over which the molecular property 
is additive. The increment from a conjugation circuit of given size is independent 
of the molecule it belongs to. 

In Sect. 2, below, VB theory is summarized from the point of view of resonance 
energy calculations. In Sect. 3, a new version of resonance theory is introduced 
as a simplified form of VB theory. This resonance theory allows quite accurate 
calculations on the ground-state of molecules. An extension of this theory is 
formally considered to allow for the inclusion of ionic contributions without 
writing explicitly other than the Kekul6 structures. A simplification of this 
formalism suggests a system of increments for the calculation of molecular 
properties. This system of increments, where all conjugation circuits found in all 
Kekul6 structures are considered, is introduced in Sect. 4 and applied to the 
calculation of resonance energies. In Sect. 5, the formalism is adapted to the 
estimation of ring-currents in polycyclic, conjugated hydrocarbons. The conjuga- 
tion circuits increments are computed systematically using a simple non-empirical 
free-electron model for the circuit taken in isolation. The calculation of these 
quantities within the VB-related formalisms which guided the derivation of the 
method would be more difficult and would normally rely on the use of some 
empirical parameters. These methods are applied to a large number of polycyclic 
hydrocarbons and the results are discussed in detail. 
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2. The Valence Bond Approach 

The success of the very simple Kekul~ structures in explaining the properties of 
conjugated hydrocarbons has been embarrassing to theoreticians. A justification 
for this success has frequently been sought in the mathematical relations that exist 
between VB and HMO theories [23, 24, 32-36]. However  it has been suggested 
[21] that the results of VB calculations may correlate better  with complex 
SCF-MO methods than with HMO theory. In an attempt to explain the good 
results obtained with very crude VB-type theories, Simpson [37-40] made a 
peculiar use of Kekul6 structures to understand ~r-electron spectra. It was 
assumed that the squares of undefined trial state-functions transformed, under 
the symmetry operations of the molecule, like the structures; a given set of 
observed term values arranged along the diagonal of a square matrix was then 
transformed into a non-diagonal form. The base vectors of this non-diagonal 
representation are then assumed to be associated with some simple set of 
structures. 

Mainly to appreciate in what way the topological features of the molecule 
influence the calculated properties, the VB formalism is now briefly reviewed and 
is applied to a number of molecules. 

Consider a basis set formed by the functions associated with the Kekul~ structures 
that can be drawn for the molecule. The ground-state energy is given by the lowest 
root of secular determinant, 

IHi j  - S , j E I  = O. 

To calculate the hamiltonian and overlap matrix elements we consider the 
superposition of structures (i) and (j). By considering only the exchange integrals 
between neighbouring orbitals and assuming these to be all equal to a quantity 
o~, H~j is easily calculated [41] and may be written in the form 

f 
Hij = 2x-n] O + 23-a Y~ [(number of bonds in cycle) 

all 
cycles 

- (number of even kisses in cycle)] 

- ~ a  (total number of bonds in molecule)} (4) 

where x is the number of cycles, counting an isolated island (o--o) as a cycle 
of one side, n is the number of pairs of orbitals in the molecule and O is the 
Coulomb integral; we say that an even kiss exists in a (even) cycle when there is 
a bond between two points in the cycle distant an even number of bonds as, for 
example, in azulene between a and b. 
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Table 1. Contributions from each cycle to the secular matrix elements 

J. A. N. F. Gomes 

Cycle size, m 4 6 8 10 12 14 16 18 20 

Multiplicative, 21-m/2 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/2561/512 
m 

Additive, ~- (in units of ~a) 2 3 4 5 6 7 8 9 10 

In the zero-differential-overlap (ZDO) approximation the overlap integral is 
given by 

&j = 2 x-" (5) 

Considering that we are dealing with even hydrocarbons only, the general term 
of the secular matrix may be put in the form 

(Hi]-SSij):g]geydes(1-m/2){-J~R-}-30L ~ [m-(numberofevenkisses)]} ( 6 )  
cycles L f-, 

where summations extend over all cycles in superimposed structures, m is the 
number  of sides in the cycle, and the resonance energy, ER, is defined by 

ER = E --  EKekul~ (7) 

with EK~kul~ the energy/ - / ,  associated with one Kekul~ structure. 

The effect of each cycle in the superimposed structures on the terms of the secular 
matrix amounts to a multiplicative factor of 21-~/2 and an additive term (inside 
the parentheses) of (m/2)(3a/2), this assuming that no even kisses occur; these 
contributions f rom each cycle are summarized in Table 1. 

Each individual secular matrix element  

(Hii -- ESi]) = E R X  + ~o~ Y 

is formed in an obvious way by superimposing the Kekul6 structures i and j, 
identifying all cycles in this superposition and then, making use of Table 1, 
calculating X by taking the product  of the multiplicative factors of all cycles, and 
evaluating Y by summing the additive factors and correcting if even kisses occur. 

Resonance energies calculated by this method for the 12 conjugated hydrocar-  
bons, alternant and non-alternant ,  in Fig. 1 are presented in Table 2. 

Notice that in a VB calculation, as outlined above, all conjugation circuits in all 
Kekul6 structures contribute to the resonance energy and they are counted as 
they appear  in the superposition of the different Kekul~ structures. 

3 .  R e s o n a n c e  T h e o r y  

A simplified version of the valence bond method described in Sect. 2 may be 
helpful both in calculating resonance energies without actually having to 
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Fig. 1. Molecules (I)-(XII) 

diagonalize a secular determinant and in clarifying the role of the cycle contribu- 
tions to the matrix elements and to the resonance energy. 

The resonance energy is obtained from the lowest root of the secular determinant. 
If we denote by CI ~ the coefficients of the different Kekul6 structures in the 
ground-state functions, these coefficients satisfy equations 

( f 4 . . -  lc7(~162 ~ = O. 
/ 

The energy E (~ is given by the expression 

t,-,(o)/_/ r 

E(o)_  q 
r ! o )  e . . r~ !o  ) . ( 8 )  

o 

Table 2. Resonance energies as calculated by valence bond (VB) and resonance theory (RT), in units 
of o~ 

Molecule I II III IV V VI VII VIII IX X XI XII 

VB 0.90 1.33 1.58 2.00 2.12 2.66 1.80 2.03 0.35 2.23 1.33 1.42 

RT  0.90 1.32 1.55 1.96 2.08 2.64 1.80 2.02 0.35 2.22 1.32 1.34 
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The coefficients CI ~ of the lowest energy state are normally of similar magnitude. 
If they are assumed to be all equal, one obtains a much simplified expression 

E/-/,j 
E R T  = i~ (9)  

Es,i 
ii 

which is the fundamental equation in the resonance theory proposed here. To 
apply this equation one writes down all Kekul~ structures for a molecule and 
makes their mutual superpositions. For each of these superpositions,/--/ij and Sii 
are calculated by looking at the cycles generated in them and using Eq. (6), with 
the help of Table 1. 

Results of calculations by resonance theory in twelve molecules of different types 
(Fig. 1) are listed in Table 2, where they are compared with the results of VB 
theory as discussed in Sect. 2. The very good quality of the correlation obtained 
(linear regression correlation coefficient 0.9994) confirms that the hypotheses 
made in the derivation of Eq. (9) are in general quite well verified. 

The only molecule in the series tested for which the results of resonance theory 
and valence bond calculations diverge by more than 2% is pyracylene(XII), with 
a deviation of 5%. 

The correlation we obtain between VB and RT is so good that some effort ought 
to be made to understand why this should be so. (i) For systems where only two 
Kekul~ structures may be written as is the case with benzene(I) and azulene(IX), 
the two methods are exactly equivalent. In fact the two sole Kekul~ structures 
are related by a permutation of the position of double bonds around a single cycle 
and their coefficients in the ground-state function are equal. This was the 
assumption made in the derivation of our version of resonance theory. (ii) When 
a system is formed by two or more non-interacting (at our level of approximation) 
subsystems, VB theory predicts a resonance energy which is the sum of the 
resonance energies of the subsystems..It can easily be seen that the proposed RT 
satisfies this relation. In fact, the hamiltonian of the composite system may be 
written as a sum of terms refering to the different parts, 

H - - H  ~ + H  b+" �9 �9 (10) 

and the state-functions are products of the state-functions for each part, 

( i ' , j ' , . . .  IHl i ,  j , . . . ) = ( i ' l H a l i ) ( j ' l i )  " ' "  + ( i ' l i ) ( j ' l H b l j )  " ' "  + ' ' ' .  (11) 

Using Eqs. (6) and (9) with (11), we get 

E R T  ~ E R T  + E b T  + " " " , (12) 

which is the result we sought to confirm. 

Perylene(VI), diphenyl(VII) and fluoranthene(X) in Table 2 are molecules which, 
at our level of approximation, are formed by non-interacting fragments, i.e. no 
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Kekul6 structures can be written linking the two parts of the molecular 
f ramework.  The results listed in Table 2 do satisfy Eq. (12). 

The version of the resonance theory proposed here shows how a ground-state 
proper ty  may be calculated by summing the increments from all cycles that are 
formed by superposition of pairs of Kekul6 structures. The way in which each 
cycle contributes to the overall property is still rather complex. The increment 
f rom a given type of cycle depends on whether it occurs alone in a superposition 
of Kekul6 structures or accompanied by other cycles in different regions of the 
molecule, according to Eq. (6). The normalization factor used (denominator  of 
Eq. (9)) depends on the total number  of Kekul6 structures associated with the 
molecule and on the number  and type of cycles formed in the superpositions. 

Later  in this paper,  further simplifications are introduced in the resonance theory 
discussed above to derive a non-empirical  system of increments for the resonance 
energy, the method being then extended to other properties.  The careful reader 
may raise two points at this stage: (i) How can we hope to get reasonable results 
by starting with Kekul6 structures alone which, even for the ground-state,  have 
been shown in many calculations to have a surprisingly small weight in the 
wave-function; (ii) even if a mixture of Kekul6 structures was to give a good 
representat ion of the wavefunction, how can quantitative or semi-quantitative 
agreement  be expected after the crude approximations which are introduced here. 
Answering these questions will help in clarifying the philosophy of the present  
approach. 

Norbeck and Gallup [42] reported on a set of very interesting VB calculations 
on benzene where it was found that a symmetry,  orthopolar ,  Kekul6-type 
function (III* in Ref. 42) has a diagonal energy 0.027 a.u. lower than the Kekul6 
admixture (I*); also, in the ab initio calculation including covalent and orthopolar  
structures, the occupation number  of I* is 0.0440 against 0.6772 for III*. To 
understand the success of simple theories based upon the consideration of the 
Kekul6 structures, one must note that these give a description of the molecule 
far more  comprehensive than the usually associated VB function suggests. With 
a particular Kekul6 structure one may associate, not only the Kekul6 function 
itself, but also the functions of a number  of polar structures. 

In this extended interpretation, a Kekul6 structure represents an electron pairing 
scheme and each "bond"  ~ is to be understood as representing a two- 
electron function; in the usual VB representation, this may be expressed as a 

_ q- 

"~ + -I- 

(61 (61 (61 (21 (61 

Fig. 2. One Kekul6 structure of benzene molecule and the polar structures which may be associated 
with that same topological representation. (In parentheses, the number of symmetry related struc- 
tures) 
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mixture of covalent and ionic terms. 

O,~b = (ab + aa  + bb ) (a[3 - ~ a  )/~/-2. 

The extended VB theory of van der Hart et al. [24] makes use of this type of 
two-electron functions. 

The VB calculations discussed above were done within the restrict interpretation 
of the Kekul6 structures. The extended interpretation taken now would ask for 
a far more elaborate computation and, possibly, new approximations. To avoid 
this, a new approach is taken in the next sections: the VB formalism is used to 
find a reduced description of the molecule but the actual calculations of the 
properties are done with an independent model. Concomitantly, Eq. (9) is further 
simplified by disregarding the overlap integrals $ii(i ~ j )  and retaining only certain 
leading terms/-/~i in the numerator. 

4. Conjugation Circuits System of Increments for the Resonance Energy 

The resonance theory developed in the previous section lends itself to a further 
simplification which will guide us in devising a new and very simple technique for 
the estimation of properties of polycyclic, conjugated hydrocarbons. 

Let us consider the expression for the matrix elements between Kekul6 structures 
(Eq. (6)). The overlap term 

S/] = 2 ~ ...... (1-~/2) (13) 

decreases quickly when more than one cycle is formed by the superposition of 
structures (i) and (]). Concomitantly, the magnitude of/-/~j decreases and hence 
the weight of a superposition with several cycles in the RT estimate of the 
resonance energy (Eq. (9)) decreases quickly with the number of cycles. 

If all superpositions where more than one cycle is formed are disregarded, we are 
reduced to considering the so-called "conjugation circuits" in all Kekul6 struc- 
tures. The concept of conjugation circuits was considered by Gomes [16, 17] in 
the context of the calculation of ring-currents which we discuss below and 
by Randid [18, 20] in his method of estimating resonance energies. This author 
works from a purely topological point of view and is therefore led to consider 
"independent circuits" only. This idea is not corroborated by the derivation 
currently presented; we conclude, therefore, that all conjugated circuits should 
be considered. 

Very recently, Gutman and Randid [43] discussed their earlier policy of using 
independent circuits only and came out in favour of using all the conjugation 
circuits as a means of avoiding the arbitrariness of the choice of the independent 
circuits. This option appears here as a logical consequence of the theory. 

Herndon [22, 44] considers certain conjugation circuits as giving the main contri- 
butions to the resonance energies. All of these authors make some analysis of the 
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topology of the molecule to break it down into a set of constituent circuits, the 
increments f rom these circuits being determined empirically for a best-fit of the 
proper ty  being calculated. 

The order of magnitude of the increment from a given conjugation circuit should 
be given by the calculated Hij; however,  the denominator  of Eq. (9) is something 
larger than the number  of Kekul6 structures. The present  author [16, 17] calcu- 
lated the increments to the ring-currents (Sect. 5) by a simple free-electron 
calculation on the conjugation circuit assumed isolated f rom the rest of the 
molecule. It was decided to use a similar approach for the resonance energies. 
Gomes  [45] calculated the delocalization energies of annulenes in a free-electron 
theory with a Kuhn harmonic potential  [46] of 2.40 eV; a standard bond length 
of 140 pm is taken for the annulenes while the bond length of the linear polyenes 
used for comparison was adjusted for best-fit of experimental  excitation energies. 
The delocalization energies so determined, which we are assuming to give the 
appropriate  increments from the conjugation circuits, are listed in Table 3. 

For comparison the increments used by Randi6 [18, 20] and those est imated in 
resonance theory for the annulene are also listed. In Fig. 3, the conjugation circuit 
increments as estimated by the delocalization energies in annulenes and those by 
Randi6 are plotted against the VB resonance energy of the annulene estimated 
according to the theory of Sect. 2. 

The delocalization energies of the [4n + 2]annulenes correlate rather well with 
the VB resonance energies (linear regression correlation coefficient 0.9992) while 
those of [4n] annulenes do not correlate linearly. The Randi6 coefficients do not 
show a linear correlation. Notice that these were determined for the [4n + 
2]-circuits by fitting resonance energies of benzene,  naphthalene,  anthracene and 
tetracene, and for the [4n ]-circuits by simple interpolation in a plot of the [4n + 2] 
annulenes resonance energies against the size of the circuit. 

Application of this system of conjugation circuits increments implies the following 
steps: 

1. Writing all the Kekul6 structures for the molecule. 

Table 3. Increments to the resonance energy from conjugation circuits in the Kekul6 structures (eV) 

size of 
circuit 4 6 8 10 12 14 16 18 

thiswork a -1.182 +0.992 -0.129 +0.423 -0.010 +0.139 -0.061 -0.008 
Randi6b -1.60 +0.869 -0.45 +0.246 -0.15 +0.100 -0.06 +0.041 
Resonance 
theory c 1.00 0.90 0.667 0 . 4 4 1  0 . 2 7 3  0 . 1 6 2  0 . 0 9 3  0.053 

a Delocalization energies of annulenes [45], assumed to be zero above the [18]annulene. 
b Fitted to calculated resonance energies [18, 20]. 
c Contribution as estimated in resonance theory, H j ( 1  + S~). 
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Fig. 3. Plot of the conjugation circuit increments as estimated by the delocalization energies of the 
annulenes [45] and those of Randi6 [18, 20] vs. the VB resonance energies 

2. Identifying all conjugation circuits, i.e. circuits with alternating single and 
double bonds in each Kekul4 structure. 

3. Summing the increments from all circuits identified in 2, according to Table 3. 
4. Dividing the result by the number of Kekul6 structures one gets the final 

estimate of the resonance energy. 

Step 2 may be more easily performed by counting the number of ways in which 
Kekul6 structures may be written for the fragment or fragments obtained when 
a given circuit and all the bonds from it are suppressed [32]. 

In Table 4 are listed the conjugation circuits counts for the series of 46 molecules 
in Figs. 1 and 4 and the resonance energies calculated by use of the increments 
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in Table 3. For comparison, the estimates of Randi6 [18, 20] are also quoted, as 
well as results of elaborate SCF-MO calculations by Dewar and de Llano [47] 
and by Dasgupta and Dasgupta [48]. 

The results presented in Table 4 allow two sorts of analysis. On the one hand we 
may compare the system of increments currently being proposed with that of 
Randi6; on the other hand, we may compare the results directly with those of the 
SCF-MO calculations. 

Comparison of the results now obtained with those of the SCF-MO calculation 
by Dewar and de Llano [47] may be visualized in Fig. 5 where these results are 
plotted. A linear regression correlation coefficient of 0.986 is obtained for the 29 
points plotted. (Regression line: -0.138 + 1.267x.) A similar plot may be drawn 
for those molecules considered by Dasgupta and Dasgupta [48]. There are slight 
differences in the methods of calculation which make the two SCF-MO results 
non-equivalent. For the 17 molecules Dasgupta and Dasgupta dealt with, a linear 
regression correlation coefficient of 0.890 is obtained with a regression line of 
equation 0.264 + 1.103x. 

Comparison of the results of the present method with those of Randi6 [18, 20] 
can be made for 17 molecules for which SCF-MO results against those of Dewar 
and de Llano [47] gives rise to a linear regression correlation coefficient of 0.975 
while for Randi6's results the correlation coefficient is 0.965. We find, therefore, 
that the current method is marginally better than that of Randi6 [18, 20] if they 
are judged by linear regressions against SCF-MO results. The actual deviations 
from the SCF-MO results may be larger for the method proposed here but this 
should not be unexpected as we did not introduce any variable fitting parameters. 

It should be clear that we are using a simplified form of the resonance theory 
expounded in Sect. 3 to guide the search for the molecular features to be 
considered in estimating the property. The increments associated with the conju- 
gation circuits are estimated without reference to the Kekul6 structures con- 
sidered for their identification. 

The system of increments devised here is simpler than the resonance theory 
discussed earlier, but may go beyond it for the reasons discussed at the end of the 
previous sections. In fact, the new estimates of resonance energies which are 
presented here (Table 4) compare better with the results of elaborate SCF-MO 
calculations by Dewar and de Llano [47] than with the resonance theory (Sect. 
3). For molecules (I)-(XI), for which results by the three methods are available, 
the linear regression correlation coefficients are 0.966 between the new estimates 
and the SCF-MO results [47] and 0.854 between these same estimates and the 
RT results in Table 2. 

5. Conjugation Circuit System of Increments for Magnetic Ring Currents 

The method of increments from conjugation circuits derived in Sect. 4 and applied 
there to the estimation of resonance energies may be used, in principle, to 
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[XLIJl] [XLIV] 

[XLV] [XLVl] Fig. 4. Molecules (XIII)-(XXVI) 

estimate other properties.  The expectation value of a proper ty  P is calculated by 

p _ 1 (14) 

where ~bi is the function associated with Kekul6 structure (i) and C~ is its coefficient 
in the state-function. This expression is analogous to Eq. (9) and, at the level of 
approximation used in Sect. 4, it may be reduced to a summation over all 
conjugation circuits in all Kekul6 structures. 

The case of magnetic ring-currents is particularly interesting because these 
represent  local propert ies of the molecules in question and we can thus check on 
the physical meaning of calculating a proper ty  as a summation over  circuits which 
concern different parts of the molecules. 

Gomes  and Mallion [17] have proposed a recipe for estimating magnetic ring- 
currents which may now be well understood as a particular application of the 
theory developed here. In estimating the increment f rom a given conjugation 
circuit one has to be particularly careful because the magnetic effect on a ring is 
proport ional  to the cross section of it exposed to the field. To account for this, 
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Fig. 5. Resonance energies calculated by the conjugation circuit system of increments vs. SCF-MO 
theory of Dewar and de Llano 

the increments are calculated in a free-electron theory with a Kuhn-type har- 
monic potential (Vo = 3.60 eV) [49] but corrected for the actual area of the circuit 
in the molecule being considered. The results obtained for the pattern of ring- 
currents compare very well with those of sophisticated methods. Of course, from 
the ring-currents so estimated it is possible to calculate other properties like 
7r-electron magnetic susceptibilities or NMR chemical-shifts. 

In Table 5 are listed the ring-currents, relative to the intensity of the ring-current 
in benzene, of the annulenes calculated via the free-electron model [49] and the 
relative areas of the corresponding regular polygons. 
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Table 5. Ring-currents (relative to benzene) for regular annulenes and their relative areas 

351 

Size of ring 4 5 6 7 8 10 

Relative current -2.189 - -  1.000 - -  -1.273 +0.721 

Relative area 0.385 0.662 1.000 1.339 1.858 2.962 

Size of ring 12 14 16 18 20 

Relative current -0.691 + 0 .375  -0.375 +0.165 -0.1 

Relative area 4.309 5.902 7.740 9.823 12.151 

The increment,/ ' ,  in the local ring-current from a conjugation circuit with N bonds, 
is calculated from the ring-current in Table 5 for the associated regular annulene 
by the expression 

aN 1 
x - -  (15) ] =JN XAN K 

where JN is the standard ring-current in the [N]annulene,  aN and AN are the 
actual area and the area of the regular [N]annulene and K is the number  of 
Kekul6 structures that may be written for the molecule. Comparing with the 
procedure  in Sect. 4, it should be noticed that the division by the number  of 
Kekul6 structures is included in increment as given by (15). 

In Table 6 the results of an application of this system of increments to molecules 
(I)-(XII)  are compared with ring-currents calculated by standard methods.  

The values calculated by the method of conjugation circuit increments being 
proposed here compare  very well with those obtained by the more orthodox 
methods of calculation. Considering the wide variation of estimates of ring- 
currents exemplified in the results reproduced in Table 6, which especially depend 
on whether  or not bond lengths are fixed throughout the calculation (for a very 
clear discussion of this point see Mallion [62] and references therein), it seems 
fair to say that the new system of increments may confidently be used to obtain 
estimates of ring-currents for magnetic susceptibility or N M R  chemical-shift 
calculations whenever more detailed studies are not available. 

In a very recent paper,  Randi6 [63] presents a particular encoding of the rings in 
benzenoid systems based on the concept of conjugation circuits. A heuristic 
reasoning leads this author to a conjugation circuit count very similar to that used 
here to produce Table 4 for the resonance energies and  it is suggested that this 
count may be correlated with the magnetic ring-currents. This is now confirmed, 
a quantitative method being proposed both for benzenoid and non-benzenoid 
polycyclic hydrocarbons.  
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Table 6. Ring currents obtained by the conjugation circuits system of increments and standard 
methods. All the currents are given by the ratios to that in benzene 

Integrated London- Pople- McWeeny b 
~r-electron 

Molecule Ring This work current a ring current reference 

I A 1 1 1 
II A 0.99 1.07 1.09 (27, 55) 
III A 0.84 1.05 (0.96) 1.08 (55) 

B 1.08 1.28 (1.32) 1.28 
IV A 1.07 1.13 1.13 (55) 

B 0.86 0.95 0.97 
V A 0.80 0.94 0.96 (55, 56) 

B 1.20 1.34 1.33 
VI A 0.99 1.03 0.97 (55, 57) 

B 0.0 0.22 0.23 
VII A 1.00 0.96 0.94 (28) 
VIII A 0.27 0.40 0.25 (+0.65) (28, 54) 

B -1.79 -1.76 -1.81 (-0.66) 
IX A 0.50 1.03 1.07 (51) 

B 0.50 1.28 1.15 
X A 0.99 1.00 (1.02) 0.99 (58) 

B 0.0 -0.04 (-0.02) 0.05 
C 1.00 0.84 0.86 

XI A 0.99 0.94 0.93 (28) 
B 0.0 -0.14 0.11 

XII A 0.29 -0.20 (+0.56) -0.39 (+0.31) (53) 
B -0.64 -2.16 (-0.74) -2.32 (-1.01) 

XIII A 0.94 1.08 (57, 59, 60) 
B 1.18 1.29 
C 1.01 1.20 
D 1.15 1.28 
E 0.61 0.84 

XIV A 0.10 -0.07 (+0.50) (+0.47) (54) 
B -1.40 -1.36 (-0.87) (-0.63) 
C -0.70 -1.87 (-0.67) (-0.56) 

XV A +0.54 -0.70 (+0.34) (53) 
B -0.30 -2.86 (-0.92) 

XVI A 0.97 1.21 (1.20) (53) 
B 0.32 1.12 (0.82) 
C 0.32 1.17 (0.84) 

XVII A -0.53 -1.45 (-1.70) 
B -0.53 -0.79 (-1.05) 

XVIII A -0.93 -2.02 (61) 
B -1.18 -3.03 
C +0.23 +0.45 

XIX A +0.18 1.10 (61) 
B +0.63 1.32 

a Calculated by Coulson et al. [28] who give the absolute value of the integrated current in benzene: 
(e2B/2me) x 94.6 A pm. In parentheses are given the results of an iterative calculation by Gomes and 
Mallion [50]. 
b Ratios of ~--electron ring-currents ealculated by London-Pople-McWeeny method [27, 51, 52]. The 
values in parentheses are the results of iterative calculations by Coulson and Mallion [53] and by 
Wilcox et al. [54]. 
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6. Conclusions 

In this paper a system of increments for the calculation of molecular properties 
has been proposed which consists of considering all conjugation circuits in all 
Kekul~ structures of a given molecule, summing the increments from each of the 
circuits and averaging over the Kekul~ structures which may be written for the 
entire molecule. The increment from a given conjugation circuit is estimated by 
comparison with the corresponding annulene and the magnitude of the property 
in the annulene is calculated in a simple free-electron theory. 

The new system has been tested with very satisfactory results for the estimation 
of resonance energies and for magnetic ring-currents, from the latter of which 
the ~r-electron contribution to NMR chemical-shifts or to magnetic suscep- 
tibilities may be computed. The results obtained for these properties suggest that 
this non-empirical system of increments may be widely applicable to other 
molecular properties. For the estimation of ring-currents no other system of 
increments transferable from molecule to molecule had been proposed for 
general, polycyclic, conjugated hydrocarbons. For the resonance energies a 
number of increments systems have been proposed. However, it seems fair to say 
that none of them has a reasonable theoretical basis and the increments have 
always been, in some way, empirically determined for best-fit to the property 
being calculated. This is avoided here by consistently using the same simple 
free-electron model. Justification for the outline of the system is found in its 
relation to VB theory. To this end, several levels of approximation of the VB 
approach to the calculation of resonance energies are discussed in some detail 
with special emphasis on contributions which may be associated with rings. 

In standard VB theory all cycles formed by superimposing Kekul~ structures 
contribute to the secular matrix but the extent of their contribution depends on 
whether they appear in isolation or accompanied by other cycles in other regions 
of the superposition. The resonance energy is obtained after diagonalization of 
a secular matrix which makes it have, in general, a very complicated dependence 
on individual matrix elements and hence on cycle terms. A simplified form of VB 
theory for the resonance energy has been derived where the ring contributions 
appear in a much simpler way. The results of this form of resonance theory have 
been shown to correlate well with those of VB theory and to satisfy some desirable 
general conditions. The resonance energy increments used in Sect. 4 are Dewar 
type resonance energies which were calculated by comparing the ~r-electron 
energy of an annulene with that of the associated linear polyene. The proposed 
system of increments from conjugation circuits has been related to this version 
of resonance theory. 

Two aspects of the system of increments currently proposed should be discussed 
separately. (i) The way in which conjugation circuits are identified in the Kekul~ 
structures is ultimately related to VB theory in the form discussed above. It differs 
from the policy adopted by Randi~ [18, 20] who worked from purely formal 
graph-theoretical concepts to conclude that only those circuits considered 
independent should be taken into account. (See, however, Gutman and Randi~ 
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[43].) The alternative adopted here is derived from a quantum mechanical 
molecular structure theory, albeit very simplified, and hence we argue that it 
should be preferred.  (ii) In estimating the increments from the conjugation circuits 
we looked for some non-empirical  method that could be used for any proper ty  
to which one might apply the system of increments. The magnitude of the proper ty  
for the corresponding annulene associated with the circuit in question seemed the 
obvious choice. A systematic use of the magnitudes of the propert ies in the 
annulene does, however,  present  considerable difficulties. Some of them are 
unstable and cannot be isolated; even those that can be prepared in the laboratory 
may have a shape with little resemblance to the shape of the circuits they are 
being associated with in the polycyclic hydrocarbon.  These are some of the 
reasons for our adopting a very simple model  in which the propert ies of the 
annulenes were calculated. The free-electron model with a Kuhn- type harmonic 
potential  was chosen as it has a bare minimum of adjustable parameters  and is 
known to reproduce,  albeit simplistically, some important  features of the proper-  
ties of real annulenes. The results obtained for the two propert ies used to test the 
model gave as much confirmation as could have been hoped for. 

The policy adopted here of non-empirical  parametr izat ion of a simplistic VB 
formalism gives results of a quality which seems, at first sight, unwarranted.  
Similarly, it had been noted [21] that results of resonance theory correlate bet ter  
with SCF-MO than with Hi ickel -MO results, although its connections with this 
last method are far bet ter  understood [23-26]. These features of methods related 
to resonance theory may be understood with an extended interpretation of the 
Kekul6 structures which is discussed in Sect. 3 above. 

It is hoped that application of the method proposed here to other propert ies may 
lead to results as good as those obtained for the two propert ies  on which it was 
tested. This being the case, it may prove a valuable aid to the rapid estimation of 
the propert ies  of polycyclic, conjugated hydrocarbons.  

The general theory outlined above can, in principle, be used in conjunction with 
a different method of estimation of the conjugation-circuits increments, provided 
that it allows a consistent calculation of the proper ty  in question on rings of any 
size. 
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